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By means of the double Laplace–Carson transform as integral averaging of the time function decreasing by
the exponential law with weight and along a semi-bounded pipe, the nonstationary heat transfer equation
under steady-state laminar or turbulent flow conditions is transformed into a boundary-value problem, which
is solved by the method of orthogonal projection of the residual, where, as a finite element, the entire boun-
ded domain of variation of elliptic coordinates is taken.

The complexity of mathematical models of heat transfer processes and new phenomena involving energy
transfer associated with the solution of the heat conduction equation calls for the development of more advanced
and effective methods for calculating the boundary-value problems of thermal physics. The search for such solution
methods is unthinkable without studying the already known methods, which were proposed by researchers at differ-
ent times, and without comprehending this scientific heritage at the level of the system approach to cognition. In
investigating the boundary-value problems of thermal physics, the main sought quantity is temperature which, in the
general case, as a function, depends, apart from the input physical parameters, on the coordinates of the current
point M(x, y, z) and the time t. In sequential analysis of input given quantities aimed at determining the sought
quantity by these arguments, the classification of these equations into parabolic, hyperbolic, and elliptic ones [1]
turned out to be useful. Their terminology was taken by analogy with the definitions of equations in partial deriva-
tives of mathematical physics. For example, in the energy transfer equation at nonstationary heat transfer with turbu-
lent (ε ≠ 0) or laminar (ε = 0) flow conditions in channels of two-dimensional cross-sections Ω(x, y − Ω) symmetric
about the 0x axis, the elliptic coordinates are ξ, η and the unilateral parabolic variables will be X, Fo [2]:
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At w = 0, ε = 0, f(X, Fo) = f(Fo) Eq. (1) goes over into the heat conduction equation for long prismatic (cylindrical)
bodies, and the replacement of η by √⎯⎯⎯⎯⎯⎯η2 + ζ2 , ξ = z ⁄ b leads to the expression
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whose solution represents the temperature fields in axisymmetric bodies. Solutions of Eqs. (1), (2) by exact methods
of mathematical physics require knowledge of the spectral problem of the second-order differential operator along el-
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liptic coordinates ξ, η in order that with the help of the found system of eigenfunctions one can form the bases of the
rigorous nonalternative space in which analysis of all given input functions of thermal loads is carried out for deter-
mining the sought temperature. As is known, such an approach was first used by Fourier in the problem on the cool-
ing of a plate with initial temperature T0 at a constant temperature Tw on the surfaces, where for determining the
temperature field by the method of separation of variables analysis of the only given quantity T0 − Tw = const was
performed by expansion into a series in terms of the system of trigonometric sine functions. The main problem in re-
alizing the Fourier method of separation of variables in problems of mathematical physics is the determination of the
base coordinates of the rigorous nonalternative space by solving the Sturm–Liouville problem. Along these lines, the
best results have been obtained for one-dimensional regions Ω of simple geometry (plate, cylinder, sphere, cylindrical
and spherical shells), for which the systems of eigenfunctions are given by trigonometric and Bessel functions. In de-
termining the eigenfunctions for the second-order self-adjoint differential operator, an important role is played by the
hypergeometric Gauss power series [3]. For example, by means of this series the orthogonal bases of rigorous spaces
for solving Gretz–Nusselt problems and heat and mass transfer problems in running-down solution layers have been
determined [4]. In general, note that almost all special functions of mathematical physics, including the orthogonal
Legendre, Laguerre, Chebyshev, and Jacobi polynomials, are somehow associated with the Gauss series [3].

An important achievement in the development of solution methods for problems of mathematical physics was
the application of integral transforms of elliptic variables. Despite the fact that the kernels of integral transforms are
defined by the eigenfunctions of the problem stated, the application algorithm becomes simpler and more standard than
in the Fourier method of separation of variables and makes it possible to find solutions at any time variables of external
boundary and internal source loads. In the method of integral transforms, a transition to the region of images of all
given input functions takes place as a result of the integral averaging with a special kernel bound by the statement of
the problem, and a transformation of the initial differential equation in partial derivatives occurs. Then the image of the
sought temperature as a solution of the obtained ordinary first-order differential equation for the time or the unilateral
parabolic variable X is defined and a reverse transition to the region of the originals is made. Since the kernels of trans-
forms in finite intervals are defined by discrete spectra (eigenvalues), the temperature field synthesis is given in the
form of an infinite series of eigenfunctions, as is customary for the method of separation of variables. In the cases of
semibounded and unbounded intervals, the kernels of integral transforms are defined already by continuous spectra, and,
therefore, the transition to the original is made by summing over such a spectrum and the solution acquires an integral
representation. Systematic use of unilateral and bilateral Fourier transforms in multidimensional regions for investigating
heat conduction problems and interrelated heat and mass transfer problems has been made in [5].

In the investigations of the boundary-value problems by the methods of finite-difference approximation (1),
(2), the analysis is the introduction into the obtained algebraic system of equations of numerical values of the given
functions of coefficient, boundary, and internal thermal loads at discrete points, and the synthesis will be any resolving
algorithm of temperature determination in internal nodes of the split domain of variation of elliptic coordinates ξ, η
and unilateral variables X, Fo. With boundary conditions of the first kind the error of solution calculation along the
direction of variation of the elliptic coordinate increases from zero at one end to a certain value in the middle part,
and then decreases to zero at the other end of the interval. Along the direction of variation of unilateral variables the
calculation error can accumulate with departure from the beginning and reach an unacceptable large value. A numerical
experiment of revealing such a property was considered in [6].

Theoretical investigations of solving Cauchy problems by numerical methods are described in a fundamental
monograph [7].

The numerical experiment performed confirms the fact that in developing solution methods for boundary-value
problems of Eqs. (1), (2) it is more expedient to use approximate numerical or analytical solutions for coordinates ξ,
η, and for unilateral variables the resolving algorithm should be realized by the exact methods of mathematical phys-
ics. Among such promising and most effective methods is the numerical-analytical method based on the simultaneous
use of the double integral Laplace transform for variables X, Fo and the orthogonal projection of the residual in the
domain of variability of elliptic coordinates ξ, η. This method was first proposed in [5].

Note that in developing methods of mathematical physics, beginning with the Fourier method of separation of
variables and up to the investigation of the properties of finite-difference schemes, by virtue of the simplicity and
graphicness of solutions, the problems of heat conduction in a plate were considered. According to this tradition, let
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us give the results of calculating the temperature inside a plate at concrete initial and internal source thermal loads by
the proposed methods in relative variables Fo = at ⁄ l2, ξ = x ⁄ l at the initial conditions

T (ξ, 0) = f0 (ξ) = 2T0 ⎧⎨
⎩
ξ ,
1 − ξ ,

   0 ≤ ξ ≤ 0.5 ;
0.5 ≤ ξ ≤ 1 .

By means of the Laplace integral transform for N = 2, 4, 6 (N is the finite subdivision number at a uniform mesh
width), the temperature changes in internal nodes from which the sequence of refinement of the temperature in the
center of the plate is written in the form

T1 (Fo) = T0 exp (− 8Fo) ,   T2 (Fo) = T0 [1.207 exp (− 9.333Fo) − 0.207 exp (− 54.627Fo)] ,

T3 (Fo) = T0 [1.244 exp (− 9.648Fo) − 0.333 exp (− 72Fo) + 0.089 exp (− 134.352Fo)]

have been found. Here, n = 1, 2, 3 (n = N ⁄ 2) is the order of approximation. The procedure of defining the problem
solution by the projection method at two initial conditions

T (ξ, 0) = f0 (ξ) = T0 sin πξ ,   T (ξ, 0) = f0 (ξ) = 4T0 (1 − ξ) ξ

leads to the temperature fields

T (ξ, Fo) = T0 sin πξ exp (− 9.8696Fo) ,   T (ξ, Fo) = 4T0 (1 − ξ) ξ exp (− 10Fo) , (3)

where the first expression is the exact solution, and the second one describes the temperature homogenization with a
high accuracy with a stabilization rate coefficient 10 instead of the exact value π2 = 9.8696. Note that for the problem
in which a numerical experiment has been performed [6], it is impossible to find a solution representation in the form
of the second formula of (3), since the initial temperature distribution is given by a nondifferentiable function.

For a plate (−1 ≤ ξ = x ⁄ R ≤ 1) with an internal heat source 
qvR

2

λ
(1 + δξ2)f(Fo) under the conditions T(�1, Fo)

= T(ξ, 0) = T0 the solution definition in a variety of alternative Riemann spaces along the first optimal base axis in

the form
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_
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leads to the temperature
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where
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(1)

 (δ) = 
9 (5δ2

 + 42δ + 105)

14δ2
 + 144δ + 378

 .

Such an integral representation of the temperature defines in the set of control functions O(f(Fo)) = 1 higher-accu-
racy solutions by one component. These solutions satisfy the initial and boundary conditions of the problem, and
after the time interval of the transient regime they coincide with the exact values. Small deviations from the exact
solution take place only in the middle part of the time interval of the transient regime. For example, at a uniform
distribution of the sources (δ = 0) and two control functions f(Fo) = 1, f(Fo) = 1 − exp (−PdFo), from this solu-
tion we find
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which practically coincide with the exact solutions at small deviations in the middle part of the time interval 0 ≤
Fo ≤ 1. The quantity p1

(1)(δ) defines the coefficient of the rate of exponential stabilization of the temperature and p1
(1)(0)

= 2.5; p1
(1)(−1) = 2.4674; p1

(1)(1) = 2.5522; p1
(1)(2) = 2.6053 exceed the exact eigenvalue μ1

2 = π2 ⁄ 4 = 2.4674. The
marked increase in p1

(1)(δ) with increasing parameter δ means that at such a maximal quadratic distribution of sources
in the wall layer the heat is removed into the environment faster. At a special parameter δ = −3, which is found from
the condition

∫ 
0

1

ψ0 (ξ) dξ = ∫ 
0

1

(1 + δξ2) dξ = 0 ,

the temperature field for the case of f(Fo) = 1 is reduced to the form

T (ξ, Fo) = T0 + 
qvR

2

4λ
 ⎛⎝1 − 2ξ2

 + ξ4⎞
⎠ ⎡⎣1 − exp (− 3Fo)⎤⎦ .

(6)

This temperature field at which the optimal basis satisfies simultaneously the boundary conditions of the first, third,
and second kind describes the process of transition to a steady thermal state by a special alternating distribution of the
internal thermal load because of the termination of the heat exchange with the environment at adiabatic walls of the
plate. Despite the fact that the problems were initially stated at boundary conditions of the first or third kind, the in-
ternal thermal loads with distribution functions, the integral of which throughout the body region goes to zero, lead to
the simulation of the process of heat conduction at zero boundary conditions of the second kind with termination of
the heat removal into the environment. Such thermal states in a plate, a cylinder, a sphere, and other bounded bodies
have been considered in [8].

The integral temperature transform T(x, t) with a kernel R(p, t) = exp (−pt) as a mean-integral averaging of a
nonstationary quantity in the time interval t1

�T (x, p, t1)� = 

∫ 
0

t1

T (x, t) R (p, t) dt

∫ 
0

t1

R (p, t) dt

 = 

∫ 
0

t1

T (x, t) exp (− p, t) dt

1
p

 (1 − exp (− p, t1))

when t1 → ∞, takes on the form of the equality

lim
t1→∞

  �T (x, p, t1)� = p ∫ 
0

∞

T (x, t) exp (− p, t) dt = pT
__

 (x, p) .

Thus, the product of the Laplace transform by the parameter  p leads to an integral averaging of a nonsta-
tionary quantity with an exponentially decreasing kernel exp (−pt), Rep > 0 throughout the interval of temperature
var iation t (0 ≤ t ≤ ∞), and the two formulas

1107



lim
t→0

  T (x, t) = lim
p→∞

  pT
__

 (x, p) , (7)

lim
t→∞

  T (x, t) = lim
p→0

  pT
__

 (x, p) (8)

receive concrete thermophysical interpretations. On the basis of the limiting property (7), separating the oscillating part
of the image T

__
(x, p) in the vicinity of a point at infinity p, A. V. Luikov [9] obtained solutions for the temperature

calculation at small Fo numbers and gave an example of the temperature calculation at the moment Fo = 0.0003 by
means of 36 terms of the exact solution (Peschl) with the replacement by two terms.

The realization of the orthogonal projection of the residual, when the entire region Ω is taken as a finite ele-
ment, enables one, in choosing alternative base coordinates and representations of the solution, to use to the full the
cross-section geometry of a channel or a prismatic body. In so doing, the limiting property (8) makes it possible to
find an optimum coordinate function along whose axis a higher-accuracy temperature field is defined in the form of a
single-component representation. Below, on the basis of the application  to (1) of the resolving algorithm at the
boundary conditions

[T (ξ, η, X, Fo)]X=0 = ϕ0 (Fo) ,   [T]Fo=0 = T0 ,   [T (ξ, η, X, Fo)]Γ = ϕ (ξ, X, Fo) (9)

we give a brief review of the system approach to the development of methods for investigating internal problems of
heat exchange in direct channels and nonstationary heat conduction in multidimensional bodies. The preference for solv-
ing boundary-value problems with boundary conditions of the first kind is justified by the fact that in experimental
studies of physical quantities by more advanced and exact methods success has been achieved in the technique of tem-
perature measurement at one point or over the entire surface of a body. Therefore, from the boundary temperature
measurement data as a yield of the intermediate response of the thermal load ad its interpolation by the function ϕ(ξ, X,
Fo) in the boundary conditions (9), we can determine theoretically the temperature field by solving the boundary-value
problem. This makes it possible to investigate the mechanism of heat exchange of a prismatic body or a fluid flow in a
two-dimensional channel with a transversely incoming external medium, i.e., enables us to propose a simplified model
for solving a complex problem of conjugate heat exchange between the body and the medium flowing past it.

Instead of using sequentially the integral Laplace transform for the variables X and Fo, let us consider the
double Laplace–Carson transform [10]:
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and its solution can be given as
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where the choice of coordinate functions ψk(ξ, η) of the alternative space is limited by only one requirement [ψk]Γ = 0
needed for making (12) consistent with the boundary condition (11). The coefficients a
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be orthogonal to the coordinate functions ψj(ξ, η) throughout the region of the clear section of the channel, i.e., from
the condition
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where, without loss of generality of the method, ϕ(ξ, X, Fo) = ϕ(X, Fo) is assumed and matrix elements are calculated
by the formulas
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dσ = dξdη .

(14)

In Laplace transforms, the parameters p and s are such that p + sw(ξ, η) > 0, i.e., the operator L[T
__

n
∗ ] is positive and

self-adjoint. Therefore, in the discrete analog the matrixes A, B, C approximating this continuous differential operator
are symmetric with positive elements. Consequently, the roots of the algebraic equations Δ(p) = ⏐A + pC⏐ = 0, Δ(s) =

⏐A + sB⏐ = 0 will be simple and negative. Let us denote them in increasing order of the absolute values as

− p1
(n)

 < 0 ,   − p2
(2)

 < 0 , ..., − pn
(n)

 < 0 ;   − s1
(n)

 < 0 , ..., − sn
(n)

 < 0     ⎛⎜⎝
pk

(n)
 > 0 ,   sk

(n)> 0⎞⎟⎠
 .

Assume in Eq. (1) ∂T ⁄ ∂Fo = 0 and in the boundary conditions (9)

ϕ (X, Fo) = ϕ (X) ,   ϕ0 (Fo) = T0 ,   f (X, Fo) = f (X) ,

Then for the stationary heat transfer in the Laplace transforms

T
∗
 (ξ, η, s) = ϕ∗ (s) + ∑ 

k=1

n

ak
∗ (s) ψk (ξ, η) (15)

from the constitutive equation (13) at p = 0 the elements of the response matrix a∗(s), according to the Cramer for-
mula, are equal to
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 NjΔjk(s), Δjk(s) are cofactors of the main determinant Δ(s) = ⏐A + sB⏐. The transfer functions
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 . (17)

This formula makes it possible to determine, by a single-type reverse transition in each block, ak(X) at particular val-
ues of ϕ∗(s), f ∗(s) and write the temperature T(ξ, η, X) in the fluid flow inside a channel with a two-dimensional
cross-section in terms of representation (15). In the general case, at ϕ(0) = T0 by the transition formula ϕ′(X) �    sϕ∗(s)
− T0 and the convolution theorem we obtain

 Tn (ξ, η, X) = ϕ (X) − ∑ 
i=1

n

 ∫ 
0

X
dϕ
dα
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 (X − α)⎤⎥⎦
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 + 
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(n)
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 dαψi
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where

ψi
(n)

 (ξ, η, N) = ∑ 
k=1

n Δk 
⎛⎜⎝
− sk

(n)
, N⎞⎟⎠

Δ′ ⎛⎜⎝
− si

(n)⎞⎟⎠

 ψk (ξ, η) .

Assume in Eq. (1) w(ξ, η) = 0 and in the thermal loads f(X, Fo) = f(Fo), ϕ(X, Fo) = ϕ(Fo), ϕ0(Fo) = T0.
Then the nonstationary temperature field in a prismatic (cylindrical) rod is given by the analogous formula

Tn (ξ, η, Fo) = ϕ (Fo) − ∑ 
i=1

n

 ∫ 
0

Fo
dϕ
dτ

 exp ⎡⎢⎣
− pi

(n)
 (Fo − τ)⎤⎥⎦

 dτψi
(n)

 (ξ, η, D) 

+ 
qvh

2

λ
 ∑ 
i=1

n

 ∫ 
0

Fo

f (τ) exp ⎡⎢⎣
− pi

(n)
 (Fo − τ)⎤⎥⎦

 dτψi
(n)

 (ξ, η, E) . (19)

If instead of η in (19) we assume √⎯⎯⎯⎯⎯⎯η2 + ζ2 , then we get the temperature Tn(ξ, √⎯⎯⎯⎯⎯⎯η2 + ζ2, Fo) inside an axisymmetric
body as a solution of Eq. (2) in the space ψk(ξ, √⎯⎯⎯⎯⎯⎯η2 + ζ2). In so doing, the matrix elements in system (13) are deter-
mined by calculating integrals (14) over the three-dimensional region Ω.

The solution for the complete truncated system (13) of the first order in the case of ϕ0(Fo) = T0 will be

a
_

1
∗
 (s, p) = 

(a1s + b1p) ⎛⎜⎝
T0 − ϕ

__∗
 (s, p)⎞⎟⎠

p + γ1
(1)

s + p1
(1)

 + 
qvh

2

λ
 

e1f
_∗

 (s, p)

p + γ1
(1)

s + p1
(1)

 , (20)
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where a1 = F1
 ⁄ C11; b1 = D1

 ⁄ C11; γ1
(1) = p1

(1) ⁄ s1
(1) = B11

 ⁄ C11; p1
(1) = A11

 ⁄ C11; s1
(1) = A11

 ⁄ B11; e1 = E1
 ⁄ C11.

Representing the nonstationary temperature in the first approximation leads to the consideration of the transfer
function of an elementary thermoinertial unit with two parameters, and by the transition formula [10]

(a1p + b1p)

p + γ1
(1)

s + p1
(1)

 �    
⎧

⎨

⎩

⎪

⎪

a1 exp (− p1
(1)

 Fo) ,

b1 exp (− s1
(1)

 Fo) ,
   

X > γ1
(1)

Fo

X < γ1
(1)

Fo

⎫

⎬

⎭

⎪

⎪
 ,   

1

p + γ1
(1)

s + p1
(1)

 = 
1

p1
(1)

 
⎛
⎜
⎝
1 − 

sγ1
(1)

 + p

p + γ1
(1)

s + p1
(1)

⎞
⎟
⎠

and the convolution theorem the value of a1(X, Fo) is determined. The solution is defined by two lines: the upper line
describes the change in the temperature of the liquid, which at the instant of Fo = 0 was already inside the channel,
and the lower line defines the temperature of the medium that has got into the channel (Fo > 0). In the solutions in
the second and subsequent approximations, the upper line is given by formula (19) and the lower one is written as the
temperature formula (18) [5].

In choosing base coordinates for investigating boundary-value problems of the first kind by representing solu-
tion (12) in a variety of alternative Riemann spaces, of great importance is the blending boundary function of the clear
section profile of the channel, i.e., the equation of the region Ω boundary. If we find a function ω(ξ, η) that is greater
than zero inside the channel and equal to zero on the wetted surface, then it is more expedient to take for the bases
of the function space the system

ψk (ξ, η) = ω (ξ, η) ξ(k−1)
 η2(k−1)

 ,   k = 1, 2, ..., n .

Methods for  composing ω(ξ, η) and choosing an optimal coordinate function depending on the states of the internal
or external boundary thermal loads were developed in [11, 12].

On the basis of the system approach to the solution methods for a combined energy transfer equation in a
planar channel (m = 0, − 1 ≤ ξ = x ⁄ R ≤ 1) and a circular pipe (m = 1.0 ≤ ξ = r ⁄ R ≤ 1)

∂T

∂Fo
 + w (ξ, m) 

∂T

∂X
 = 

1

ξm 
∂

∂ξ
 
⎛
⎜
⎝
ξm

 
∂T

∂ξ

⎞
⎟
⎠
 + 

qvh
2

λ
 ψ0 (ξ) f (X, Fo) (21)

at the generalized boundary conditions of the third kind

[T (ξ, X, Fo)]X=0 = ϕ0 (Fo) ,   [T (ξ, X, Fo)]Fo=0 = T0 ,   0 ≤ X < ∞ ,

⎛
⎜
⎝

∂T
∂ξ

 + Bi T (ξ, X, Fo)
⎞
⎟
⎠ξ=1

 = Bi 
⎛
⎜
⎝
ϕ (X, Fo) + 

q
α

⎞
⎟
⎠
 ,   

⎛
⎜
⎝

∂T
∂ξ

⎞
⎟
⎠ξ=0

 = 0

(22)

let us compare a series of special problems to the literature solutions and present some new results of investigations.

In the formulation of the problem X = 
1

Pe
 
z
R

, Pe = 
w0R

a
, Bi = 

αR

λ
, and Φ(X, Fo) = ϕ + 

q

α
 is the generalized reduced

temperature of the environment. It is customary in solar-energy technology to call the quantity Φ(X, Fo) = Tw + 
q
α

 =

const, according to Duffy, the generalized air temperature. The solution in Laplace–Carson transforms satisfying ex-
actly the boundary conditions (22) is in the family of the linear composition

T
__

n
∗
 (ξ, s, p) = Φ

__
∗
 (s, p) + ∑ 

k=1

n

a
_

k
∗
 (s, p) 

⎛
⎜
⎝

Bi + 2k
Bi

 − ξ2k⎞
⎟
⎠
 .

For steady heat exchange (∂T ⁄ ∂Fo = 0), when Φ(X, Fo) = Tw + 
q
α

 = const, qv(ξ, X) = qv = const, the temperature
change as a solution of the generalized Gretz–Nusselt problem is reduced to the form
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Θn (ξ, X, Bi, m) = 

T (ξ, X) − 
⎛
⎜
⎝
Tw + 

q
α

⎞
⎟
⎠

T0 − 
⎛
⎜
⎝
Tw + 

q
α

⎞
⎟
⎠

 = ∑ 
k=1

n

ψk
(n)

 (ξ, Bi, m, D) exp ⎡⎢⎣
− sk

(n)
 (Bi, m) X⎤⎥⎦

 

+ Po 
⎡
⎢
⎣

1

2 (m + 1)
 
⎛
⎜
⎝

Bi + 2

Bi
 − ξ2⎞

⎟
⎠
 + ∑ 

k=1

n

ψk
(n)

 (ξ, Bi, m, E) exp ⎡⎢⎣
− sk

(n)
 (Bi, m) X⎤⎥⎦

⎤
⎥
⎦
 ,

where Po = qvR
2 ⁄ [λ(T0 − (Tw + q ⁄ α))] is the Pomerantsev number. The input values in this solution have been found

with a Poiseuille velocity w(ξ, m) = 0.5(m + 3)(1 − ξ2) up to the third order of approximation (n = 1, 2, 3) for num-
bers Bi = 1, 4, 10, ∞. At a fixed order of n the deviation of the approximate solution increases with increasing Bi,
and the largest calculation error is obtained in the problem with boundary conditions of the first kind. Even at such
properties the values of ψ1

(3)(ξ, ∞, m, D), s1
(3)(∞, m) practically coincided with the expressions in the first term of the

Gretz–Nusselt solution. It is enough to carry out the thermal calculation by the temperature field in the third approxi-
mation. Refinement of the solution in the fourth and subsequent approximations is mainly of theoretical interest. For a
circular pipe with boundary conditions of the first kind, the following convergence of the eigenvalues has been found:
s1
(1) = 4, s1

(2) = 3.671, s2
(2) = 36.333; s1

(3) = 3.6569, s2
(3) = 23.938, s3

(3) = 161.20; s1
(4) = 3.6568, s2

(4) = 22.444, s3
(4) =

74.428, s4
(4) = 532.27, i.e., the rates of exponential temperature stabilizations along the length of the channel practically

coincide with the exact changes from the second order of approximation.
The local Nusselt numbers obtained by the formulas

Nu (X, m, Bi) = − 
2

�Θ (X, m, Bi)�
 
⎛
⎜
⎝

∂Θ
∂ξ

⎞
⎟
⎠ξ=1

 ,   Θ = ∑ 
k=1

3

ψk
(3)

 (ξ, Bi, m) exp ⎛⎜⎝
− sk

(3)
X⎞⎟⎠

 , 

gave good agreements with the known solutions [2], and the limiting values lim
X→∞

 Nu(X, 0, ∞) = 3.77, lim
X→∞

 Nu(X, 1,
∞) = 3.66 are equal to the exact minimum Nusselt values.

Let us give two examples of higher-accuracy calculations of the temperature fields along one space axis with
an optimal coordinate function, which is chosen for individual thermophysical processes and depending on the kind of
external boundary or internal source thermal loads. The optimal coordinate function at a uniform distribution of inter-

nal sources (ψ0(ξ) = 1) will be ψ1(ξ, m) = 
Bi + 2

Bi
 − ξ2. The combined representation of the solution of the boundary-

value problem

∂
∂ξ

 
⎛
⎜
⎝
ξm

 
∂T

∗

∂ξ
⎞
⎟
⎠
 − ⎡⎢⎣

sT
∗
 (ξ, s) − T0

⎤⎥⎦
 w (ξ, m) ξm

 = − 
qvR

2

λ
 ξm

f
∗
 (s) ,

⎛
⎜
⎝

∂T
∗

∂ξ
 + Bi T

∗
 (ξ, s)

⎞
⎟
⎠ξ=1

 = Bi T0
 ⁄ s ,   

⎛
⎜
⎝

∂T
∗

∂ξ
⎞
⎟
⎠ξ=0

 = 0

leads to the coefficient

a1
∗ (s, m) = 

qvR
2

2λ (m + 1)
 
s1
(1)

 (Bi, m) f∗ (s)

s + s1
(1)

 (Bi, m)
 ,

and at an arbitrary control function f(X) the temperature is defined by the formula
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T (ξ, X, m, Bi) = T0 + 
qvR

2

2λ (m + 1)
 
⎛
⎜
⎝

Bi + 2

Bi
 − ξ2⎞

⎟
⎠
 s1

(1)
 (Bi, m) ∫ 

0

X

f (α) exp ⎡⎢⎣
− s1

(1)
 (X − α)⎤⎥⎦

 dα ,

whence in the fluid flow inside a circular pipe at m = 1, f(X) = 1 will be written as

T (ξ, X, m, Bi) = T0 + 
qvR

2

4λ
 
⎛
⎜
⎝

Bi + 2

Bi
 − ξ2⎞

⎟
⎠
 
⎡
⎢
⎣
1 − exp 

⎛
⎜
⎝
− 

12Bi (Bi + 4) X

3Bi
2
 + 16Bi + 24

⎞
⎟
⎠

⎤
⎥
⎦

(23)

and after the initial part of the pipe this expression coincides with he exact solution.
For the second problem, let us consider the linear change in the ambient temperature (T0 + ΔTX, qv = 0) or

the change that goes over into such a function with increasing X. The optimal coordinate function for the circular pipe
will be

ψ1 (ξ, Bi) = 
4 + 3Bi

Bi
 − 4ξ2

 + ξ4
 , (24)

and the temperature field along this space axis at Bi = ∞ takes on the form

T (ξ, X) = T0 + ΔTX − 
ΔT
8

 ⎛⎝3 − 4ξ2
 + ξ4⎞

⎠ (1 − exp (− 3.729X)) . (25)

After the initial part of the pipe this solution goes over into a self-similar expression which will coincide with the
exact temperature change. We can find a solution with such a property along the axis (24) for the thermal load

ϕ (X) = T0 + ΔTX (1 − exp (− PdX)) .

Refinement of solution (25) in the second approximation in the space ψk = (3 − 4ξ2 + ξ4)ξ2(k−1) leads to the expression

Θ (ξ, X) = 
T (ξ, X) − T0

ΔT
 = X − 0.125 ⎛⎝3 − 4ξ2

 + ξ4⎞
⎠ [1 − 1.056 exp (− 3.662X) 

+ 0.056 exp (− 30.863X)] + 0.0402 ⎛⎝3ξ2
 − 4ξ4

 + ξ6⎞
⎠ [exp (− 3.662X) − exp (− 30.863X)] . (26)

From (25) and (26) the heat inflow needed for a linear increase in the wall temperature along the flow is defined, re-
spectively, by the formulas

q (X) = − λ 
⎛
⎜
⎝

∂T
∂r

⎞
⎟
⎠r=R

 = 
λ
R

 
⎛
⎜
⎝

∂T
∂ξ

⎞
⎟
⎠ξ=1

 = 
λΔT
2R

 ⎡⎣1 − exp (− 3.729X)⎤⎦ .

q (X) = 
λΔT
2R

 ⎡⎣1 − 0.734 exp (− 3.662X) − 0.266 exp (− 30.863X)⎤⎦ ,

which practically coincide with one another along the full length of the pipe.
In heat-transfer problems, beginning with the classical Gretz–Nusselt statements, mainly velocity values of

steady-state isothermal flows were introduced into Eq. (21) despite the fact that the heat transfer is investigated under
the conditions of heating or cooling of the fluid flow through the channel walls. If the relative velocity w(ξ, η) of the
isothermal flow is determined by the solution of the Poisson equation at a constant quantity on the right side −h2 ⁄ μ
∂P ⁄ ∂z = const < 0, then under the conditions of nonisothermal flow when the stationary temperature field depends
only on the coordinates ξ, η, the dynamic viscosity coefficient should be also taken as a variable quantity of these ar-
guments. Methods for defining the approximate analytical expression of velocity as a solution of the Poisson equation
at constant and variable fluid moving forces (h2 ⁄ μ) ∂P ⁄ ∂z = f(ξ, η) were developed in [11, 13].
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In a circular pipe at f(ξ, δ) = 
R2(1 + δξ2)

μ0
 
∂P
∂z

 the exact solution will be

W (ξ, δ) = 
3w0

2 (3 + δ)
 ⎡⎣4 + δ − ⎛⎝4ξ2

 + δξ4⎞
⎠
⎤
⎦ ,   w0 = 

R
2
 (3 + δ)
24μ0

 , (27)

which at δ = 0 goes over into the Poiseuille distribution. The dynamic viscosity coefficient μ(ξ, δ) = 
μ0

1 + δξ2, where

μ(0, δ)  = μ0, μ(1, δ)  = 
μ0

1 + δ
 are the extreme values, δ > 0 under heating and δ < 0 under cooling of the liquid

through the channel walls. The velocity profiles become filled more homogeneously in the case of heating and prolate
in the flow core upon cooling. The velocity curve has an inflection point only in the case of cooling (δ < 0). Differ-
entiating solution (27), we obtain the expression

⎛
⎜
⎝

∂W

∂ξ
⎞
⎟
⎠ξ=1

 = − 
2R

2
 (2 + δ) w0

3 + δ
 ,

taking a zero value with the parameter δ = −2. In the distribution with alternating signs, the moving force of a
pumped fluid flow with the special parameter δ∗ = −2 at which the friction force disappears on the pipe surface is the
root of the equation

(m + 1) ∫ 
0

1

f (ξ, δ) ξm
dξ = 0 ,   m = 0 ,   m = 1 ,

and for two-dimensional convex profiles this condition goes over into equality to zero of the channel’s cross-section
integral of the variable force f(ξ, η).

For heat-transfer problems in channels with turbulent flow conditions, the given resolving algorithm makes it
possible to attain the aim only at given values of the velocity w(ξ, η) and the function ε(ξ, η) in the energy transfer
equation (1). Despite the fact that the function ε enters under the sign of derivatives, in the realization of the method
integration over this quantity is only performed by formulas (14). Therefore, small errors introduced by approximate
values of ε(ξ, η) and w(ξ, η) lead to small deviations in determining the temperature field. The values of A11 and other
elements of the matrix A increase with increasing turbulent effect ε > 0. For the matrix, B11 and other elements decrease
at a more filled velocity profile and take minimum values in a plug flow. Consequently, the eigenvalues s1

(n) and p1
(n)

in the first approximation are S1
(1) = A11

 ⁄ B11, p1
(1) = A11

 ⁄ C11 and in the subsequent approximations under turbulent con-
ditions they take larger values than in laminar flows, and this confirms the higher stabilization rates of the temperature
fields and the heat transfer intensity in turbulent flows of the medium. Thus, the simplification of the problem for the
turbulent flow of a molten metal by considering the rod flow [14] is fully justified by the above derivations.

The isothermal flow velocity in an equilateral triangular channel is expressed exactly in terms of the compos-
ite boundary function in the form

w (ξ, η) = W (ξ, η) ⁄ w0 = 15 ⎛⎝ξ
2
 − η2⎞

⎠ (1 − ξ)

and in the flow core max W = W(2 ⁄ 3, 0) = 2.222w0. The change in the stationary temperature as a solution of
Eq. (1) at β = 3, ∂T ⁄ ∂Fo = 0 and at coordinate functions

ψ1 (ξ, η) = ω (ξ, η) = ⎛⎝ξ
2
 − η2⎞

⎠ (1 − ξ) ,   ψ2 = ωη2
 ,   ψ3 = ωξ2

 ,

as well as at constant boundary conditions (ϕ(X) = Tw, ψ0 = 0) is reduced to the form
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Θn (ξ, η, X) = 
Tn (ξ, η, X) − Tw

T0 − Tw
 = ω (ξ, η) ∑ 

i=1

n

ψi
(n)

 (ξ, η) exp ⎛⎜⎝
− si

(n)
X⎞⎟⎠

 , (28)

where the values of si
(n) and ψi

(n) have been found up to the third order of approximation. The calculations of the
eigenvalues yielded s1

(1) = 25.667, s1
(2) = 24.084, s2

(2) = 198.812, s1
(3) = 24.077, s2

(3) = 85.509, s3
(3) = 205.479, and for

the eigenfunctions in the third approximation

ψ1
3
 (ξ, η) = 9.738 − 12.348η2

 + 0.486ξ2
 ,   ψ2

(3)
 (ξ, η) = 1.545 + 0.073η2

 + 3.402ξ2
 ,

ψ3
3
 (ξ, η) = 0.219 + 43.707η2

 − 4.754ξ2
 .

It can easily be shown that at all similar points of the three faces the local thermal flows are identical. Therefore, the
changes in the thermal flows q on the walls can be determined by means of the formula for the face x = h:

qn
∗ (η, X) = 

q (η, X) h
λ (T0 − Tw)

 = − 
⎛
⎜
⎝

∂Θn

∂ξ
⎞
⎟
⎠ξ=1

(29)

and by two approximations

q1
∗ (η, X) = 9.167 (1 − η2) exp (− 25.667X) ,   q2

∗ (η, X) = (1 − η2) 

× ⎡⎣(9.526 − 12.475η2) exp (− 24.084X) + (− 1.989 + 42.503η2) exp (− 198.812X)⎤⎦ .
(30)

The change in the local Nusselt number is determined by the mass-average temperature

Nu
(n)

 (X) = − 
1

4 �Θ (X)�
 
d �Θ (X)�

dX
 ,   �Θ (X)� = 

∫ Θwdξdη

∫wdξdη
 , (31)

and by the solution in the second approximation in the form

Nu
(n)

 (X) = 
2.676 [1 + 0.797 exp (− 79.768X)]

1 + 0.108 exp (− 79.768X)
 .

(32)

Determinations of the values of (29) and (31) by the temperature fields in the third approximations have led to minor
refinements of the values of (30) and (32). The Nu(2)(X), Nu(3)(X) and q2

∗, q3
∗ curves have practically merged:

lim
x→∞

  Nu
(2)

 (X) = 2.6757 ,   lim
x→∞

  Nu
(3)

 (X) = 2.6753 .

The theoretical studies with the use of different formulas for  calculating Nusselt numbers made for  the tempe-
rature field (28) in the third approximation gave good agreement with the experimental data obtained by the re-
searchers of the Polzunov Central Boiler-Turbine Institute (TsKTI) and with the results of investigations carried out by
I. Cox and R. Stevens, which are presented in [2].

The problem of nonstationary heat transfer with constant boundary conditions of the first kind was investi-
gated by Siegel in [15], where upon integral averaging the equation

∂
∂Fo

 ∫ 
0

1

T (ξ, X, Fo) ξm
dξ + 0.5 (m + 3) ∂

∂X
 ∫ 
0

1

⎛
⎝1 − ξ2⎞

⎠ T (ξ, X, Fo) ξm
dξ = ∫ 

0

1
∂
∂ξ

 
⎛
⎜
⎝
ξm

 
∂T
∂ξ

⎞
⎟
⎠
 dξ (33)
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is solved by the method of characteristics for variables X, Fo and by the temperature representation for ξ by a power
polynomial. However, such an approach leads to worse results than the calculation by the proposed algorithm. Even in
the seventh order of approximation the first eigenvalues of α0 = 5.1540, β0 = 7.3136 have been found. While β0 is
fairly close to the exact value of 2s1 = 7.316, α0 is 10.9% less than s1 = 5.783. More detailed comparisons were
made as long ago as in [5]. Interestingly, equality (33) is essentially an orthogonal projection of the residual at bound-
ary conditions of the second kind along the first space axis, since in such problems for any bounded domain Ω the
first eigenfunction is ψ1 = 1 with a value of μ1

2 = 0. If we make the assumption

(m + 1) ∫ 
0

1

T (ξ, X, Fo) ξm
dξ = (m + 1) ∫ 

0

1

w (ξ, m) T (ξ, X, Fo) ξm
dξ = T (1, X, Fo) = T (X, Fo) ,

which is true only at small Bi numbers (Bi << 1), then the introduction of the value of 
⎛
⎜
⎝

∂T
∂ξ

⎞
⎟
⎠ξ=1

 into the right side of

(33) from the constant boundary conditions (22) leads with respect to T(X, Fo) to the equation

∂T
∂Fo

 + 
∂T
∂X

 + Bi (m + 1) T (X, Fo) = Bi (m + 1) 
⎛
⎜
⎝
Tw + 

q
α

⎞
⎟
⎠

and the solution under the conditions [T]X=0 = [T]Fo=0 = T0 will be

Θ (X, Fo) = 

T (X, Fo) − 
⎛
⎜
⎝
Tw + 

q
α

⎞
⎟
⎠

T0 − 
⎛
⎜
⎝
Tw + 

q
α

⎞
⎟
⎠

 = ⎧⎨
⎩
exp (− (m + 1) Bi Fo) ,
exp (− (m + 1) Bi X) ,    X > Fo

X < Fo
⎫
⎬
⎭
 .

The upper  lines for  the heat conduction in a plate (m = 0), a cylinder  (m = 1), and a sphere (m = 2) have
been found singly by a different approach [19]. Integral averaging of the temperature in a fluid flow over  the
cross-section area enables us to propose a simplified method for  solving problems of heat transfer  in circular  chan-
nels Ω(R1 ≤ r ≤ R2) at boundary conditions of the second and third kinds:

∂T
∂t

 + W (r) ∂T
∂z

 = 
a
r

 
∂
∂r

 
⎛
⎜
⎝
r 

∂T
∂r

⎞
⎟
⎠
 ,   T (r, z, 0) = T0 ,

⎛
⎜
⎝
− λ 

∂T
∂r

⎞
⎟
⎠r=R1

 = q1 (z, t) ,   
⎛
⎜
⎝
− λ 

∂T
∂r

⎞
⎟
⎠r=R2

 = α ⎡⎣T (R2, z, t) − Tw
⎤
⎦ + q2 (z, t) ,   q1 > q2 ,

where the first boundary condition is created by a fuel element in the form of a circular rod whose surface is at the
same time the internal wall of the channel. Let us integrate the heat transfer equation with respect to the channel
thickness

∂
∂t

 
⎛
⎜
⎝

⎜
⎜
 ∫ 
R1

R2

Trdr
⎞
⎟
⎠

⎟
⎟
 + 

∂
∂z

 
⎛
⎜
⎝

⎜
⎜
 ∫ 
R1

R2

TWrdr
⎞
⎟
⎠

⎟
⎟
 = a 

⎡
⎢
⎣
R2 

⎛
⎜
⎝

∂T
∂r

⎞
⎟
⎠r=R2

 − R1 
⎛
⎜
⎝

∂T
∂r

⎞
⎟
⎠r=R1

⎤
⎥
⎦

with the use of the values

⎛
⎜
⎝

∂T

∂r

⎞
⎟
⎠r=R1

 = − 
q1 (z, t)

λ
 ,   

⎛
⎜
⎝

∂T

∂r

⎞
⎟
⎠r=R2

 = − 
q1 (z, t)

λ
 − 

α
λ

 ⎡⎣T (R2, z, t) − Tw
⎤
⎦
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on the assumption that the mass-average temperature coincides with the integral-average temperature. For a liquid-

metal coolant with a high heat conductivity in thermally narrow channels (Bi = 
αR
λ

 << 1, R = R2 − R1) the temperature

in the wall layer T(R2, z, t) = T(z, t) can be equated to the mass-average temperature. Then the problem stated for T(z, t)

transforms into a first-order equation, whose integration at the initial conditions T(z, 0) = T0 solves the stated problem
at a given heat inflow q1(z, t). Thus, when the boundary loads are expressed in terms of the temperature gradient

(boundary conditions of the second and third kind), then the integral averaging over the elliptic coordinates reduces the
investigation of the heat transfer in a continuum with a nonuniformly distributed parameter (temperature in space and
time) to the definition of the solution in a medium with a uniform parameter over the cross-section of the channel in
the form of the temperature change along the length and with time as a response of one differential inertial link.

At a plug flow (w = 1), in the constituent system (13) the matrixes B = C, F = D and the elements of the
response matrix a

_∗(s, p) with respect to the parameter σ = s + p reduce to simpler expressions, and this makes it
possible to carry out decomposition into sums of blocks from responses of two-parameter thermally inertial links. In-
vestigations of problems of nonstationary heat transfer in channels reduce essentially to the determinations of the
eigenvalues of pi

(n) = si
(n) = σi

(n) and functions for problems of heat conduction in prismatic bodies with the same
convex cross-sections Ω.

Assuming in Eq. (21) w(ξ, m) = 0, let us describe the method for seeking a higher-accuracy solution by a
one-component representation along the optimal space axis whose coordinate function depends on the kind of distri-
bution ψ0(ξ) of the internal thermal load. For a uniform distribution, such a base coordinate will be ψ1(ξ, m) =

Bi + 2
Bi

 − ξ2 and the solution at f(Fo) = 1 reduces to the form

T (ξ, Fo, Bi, m) = T0 + 
qvR

2

2λ (m + 1)
 
⎛
⎜
⎝

Bi + 2

Bi
 − ξ2⎞

⎟
⎠
 
⎡
⎢
⎣
1 − exp 

⎛
⎜
⎝
− 

Bi (m + 1) (m + 5) (Bi + m + 3) Fo

2Bi
2
 + 2 (m + 5) Bi + (m + 3) (m + 5)

⎞
⎟
⎠

⎤
⎥
⎦
 . (34)

For the power distribution ψ0(ξ, δ) = 1 + δξn at n = 4 and the control function from the class O(f(Fo)) = 1, by solv-
ing the stationary problem with a source qv(1 + δξ4) we find

ψ1 (ξ, m, Bi, δ) = 6 ((m + 5) + δ (m + 1)) Bi
−1

 + 3 (m + 5) + δ (m + 1) − 3 (m + 5) ξ2
 − δ (m + 1) ξ6

 . (35)

At such an optimal space coordinate in the Riemann space the integrated nonstationary temperature for the three fuel
elements reduces to the form

T (ξ, Fo, m, Bi, δ) = T0 + 
qvR

2
p1

(1)
 (m, δ)

6λ (m + 1) (m + 5)
 ψ1 (ξ, m, Bi, δ) ∫ 

0

Fo

f (τ) exp ⎡⎢⎣
− p1

(1)
 (m, δ) (Fo − τ)⎤⎥⎦

 dτ , (36)

where

p1
(1)

 = A11
 ⁄ C11 ;   A11 = − ∫ 

0

1
d

dξ
 
⎛
⎜
⎝
ξm

 
dψ1

dξ
⎞
⎟
⎠
 ψ1dξ > 0 ;   C11 = ∫ 

0

1

ψ1
2ξm

dξ .

At f(Fo) = 1, from this solution we obtain the expression

T (ξ, Fo, m, Bi, δ) = T0 + 
qvR

2

6λ (m + 1) (m + 5)
 ψ1 (ξ, m, Bi, δ) ⎡⎢⎣

1 − exp ⎛⎜⎝
− p1

(1)
 (m, δ) Fo⎞⎟⎠

⎤⎥⎦
 , (37)

which at δ = 0 coincides with temperature (34). A special parameters δ∗ determined from the condition
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∫ 
0

1

ψ0 (ξ, δ) ξm
dξ = ∫ 

0

1

(1 + δξn) ξm
dξ = 0 ,   n = 4 , (38)

will be δ∗(m) = −(m + 5) ⁄ (m + 1). Then function (35) is appreciably simplified and reduces to the form ψ1(ξ, m, Bi,
δ∗) = (m + 5)(2 − 3ξ2 + ξ6). Solutions (36), (37) with such a parameter δ∗ transform into the expressions

T (ξ, Fo, m, δ∗) = T0 + 
qvR

2
p1

(1)
 (m, δ∗)

6λ (m + 1)
 ⎛⎝2 − 3ξ2

 + ξ6⎞
⎠ ∫ 

0

Fo

f (τ) exp ⎡⎢⎣
− p1

(1)
 (m, δ∗) (Fo − τ)⎤⎥⎦

 dτ , (39)

T (ξ, Fo, m, δ∗) = T0 + 
qvR

2

6λ (m + 1)
 ⎛⎝2 − 3ξ2

 + ξ6⎞
⎠ ⎡⎢⎣

1 − exp ⎛⎜⎝
− p1

(1)
 (m, δ∗) Fo⎞⎟⎠

⎤⎥⎦
 , (40)

where δ∗(0) = −5; δ∗(1) = −3; δ∗(2) = −7 ⁄ 3; p1
(1)(0, δ∗) = 2.799; p1

(1)(1, δ∗) = 6.364; p1
(1)(2, δ∗) = 10.662.

At internal thermal load distributions with property (38) in the domain Ω the body surfaces become adiabatic
and the process of transition to the stationary thermal state is described by formulas (39), (40). For example, inside a
sphere at ψ0(ξ, δ∗) = 1 − 7 ⁄ ξ4 such stabilization of the temperature field occurs with heat release in the central part
0 ≤ ξ < 0.81 and absorption in the spherical shell 0.81 ≤ ξ < 1. With a special parameter δ∗ the first basic coordinate
function no longer depends on both the Bi number and the parameter m and is equal for all the three simple bodies.
Simultaneously, it satisfies the zero boundary conditions of the first, second, and third kind in spite of the fact that the
problem was stated only at boundary conditions of the third kind. Analogous solutions with such properties of the
thermal state can be found at another exponent n in the function ψ0(ξ, δ∗) = 1 + δξn, and the two-parameter repre-
sentation ψ0(ξ, δ1, δ2) = 1 + δ1ξ2 + δ2ξ

4 makes it possible to obtain the effect of self-organization of the transition to
the steady state of the transfer potential in a body with an adiabatic boundary at a minimum thickness of the heat ab-
sorption layer. Note that the stationary heat conduction problem at internal thermal loads of constant signs and zero
boundary conditions of the second kind in any bounded domain has no solution.

If we assume ψ0(ξ, δ) = δ + ξ2, then the optimal coordinate function will be ψ1(ξ, m, δ) = 4(δ(m + 3) +
(m + 1))Bi−1 + 2δ(m + 3) + (m + 1) − 2(m + 3)δξ2 − (m + 1)ξ4, and at δ∗(m) = −(m + 1) ⁄ (m + 3) when the heat absorp-
tion occurs already in the central part, we arrive at a more simplified basis

ψ1 (ξ, m, δ∗
 (m)) = − (m + 1) ⎛⎝ξ

4
 − 2ξ2

 + 1⎞
⎠ .

The passing of the temperature to the stationary mode in the case of f(Fo) = 1 in the three simple bodies with adi-
abatic surfaces is defined by the formula

T (ξ, Fo, δ∗
 (m)) = T0 + 

qvR
2

4λ (m + 3)
 ⎛⎝ξ

4
 − 2ξ2

 + 1⎞
⎠ ⎡⎢⎣

1 − exp ⎛⎜⎝
− p1

(1)
 (δ∗) Fo⎞⎟⎠

⎤⎥⎦
 ,

where p1
(1)(δ∗(0)) = 3; p1

(1)(δ∗(1)) = 6.667; p1
(1)(δ∗(2)) = 11.

Now, let us consider, as distributions of the local internal loading powers, any eigenfunctions of the problems
of heat conduction in the three bodies, i.e., assume ψ0(ξ) = ψk(ξ, m), where ψk(ξ, 0) = cos (μkξ); ψk(ξ, 1) = J0(μkξ);

ψk(ξ, 2) = 
sin (μkξ)

μkξ
, and μk stand for the roots of the characteristic equations at the three kinds of boundary condi-

tions. For example, for the cylinder such equations are [9]

J0 (μ) = 0 ,   J1 (μ) = 0 ,   
J0 (μ)
J1 (μ)

 = 
μ
Bi

 .
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The systems approach to the realization of the resolving algorithm in a rigorous space for the internal load
qvψk(ξ, m)F(Fo) gives the exact solution

T (ξ, Fo, m) = T0 + 
qvR

2

λ
 ψk (ξ, m) ∫ 

0

Fo

f (τ) exp ⎡⎣μk
2
 (m) (Fo − τ)⎤⎦ dτ (41)

and in the circular rod at a constant control function (f(Fo) = 1) we obtain

T (ξ, Fo, 1) = T0 + 
qvR

2

λμk
2
 (1)

 J0 (μkξ) ⎡⎣1 − exp ⎛⎝− μk
2
 (1) Fo⎞

⎠
⎤
⎦ . (42)

Since at boundary conditions of the second kind for all bodies to the zero eigenvalue there corresponds ψ1(ξ, m) = 1,
from the orthogonality of the system of eigenfunctions

∫ 
0

1

ψ1 (ξ, m) ψk (ξ, m) ξm
dξ = ∫ 

0

1

ψk (ξ, m) ξm
dξ = 0 ,   �k ≥ 2 ,

it follows that the distribution function ψ0(ξ) = ψj(ξ, m) satisfies condition (38) at −j ≥ 2, and the exact solution (41)
describes the process of transition to the stationary state at adiabatic boundaries. Note that in [14] the functions ψ0(ξ)
= ψ1(ξ, m) as source powers of fuel elements are considered only for the first eigenvalue μ1

2(m), since for the other
eigenvalues the eigenfunctions are alternating.

In conclusion, we give, without derivations, the temperature values in multidimensional domains. Inside a rec-
tangular rod Ω(−h ≤ x ≤ h, −b ≤ y ≤ b) with a heat source qv[(1 + β) − (η2 + βξ2)]f the temperatures at f(Fo) = 1 and
f(Fo) = 1 − exp (−PdFo) are determined by the formulas

T (ξ, η, Fo) = T0 + 
qvh

2

λ (1 + β)
 ⎛⎝1 − ξ2⎞

⎠ 
⎛
⎝1 − η2⎞

⎠ ⎡⎢⎣
1 − exp ⎛⎜⎝

− p1
(1)

 (β) Fo⎞⎟⎠
⎤⎥⎦
 ,   p1

(1)
 (β) = 2.5 (1 + β) ,

T (ξ, η, Fo) = T0 + 
qvh

2

λ (1 + β)
 ⎛⎝1 − ξ2⎞

⎠ 
⎛
⎝1 − η2⎞

⎠ 
⎡
⎢
⎣
1 − 

Pd exp ⎛⎜⎝
− p1

(1)
 Fo⎞⎟⎠

 − p1
(1)

 exp (− Pd Fo)

Pd − p1
(1)

 (β)

⎤
⎥
⎦
 .

In a square rod (h = b, β = 1) at a source qv cos μ1ξ cos μ1η and heat exchange with the environment whose tem-
perature is T0, the expression for T(ξ, η, Fo) is reduced to the form

T (ξ, η, Fo) = T0 + 
qvh

2

2λμ1
2 cos μ1ξ cos μ1η ⎡⎣1 − exp ⎛⎝− μ1

2
Fo⎞

⎠
⎤
⎦ ,

where μ1 is the first root of the equation cot μ = μ ⁄ Bi, Bi = αh ⁄ λ, h = b. Inside a prism with adiabatic faces and
alternating load qv[(1 + β) − 3(ξ2 + βη2)] the temperature field is given by the formula

T (ξ, η, Fo) = T0 + 
qvh

2

4λ
 
⎛
⎜
⎝
ξ4

 − 2ξ2
 + η4

 − 2η2
 + 

14

15

⎞
⎟
⎠
 ⎛⎝1 − exp (− 5 (1 + β) Fo)⎞⎠ .

In an isosceles triangular prism Ω
⎛
⎜
⎝
y ≤ 

b
h

x, y ≥ − 
b
h

x, 0 ≤ x ≤ h
⎞
⎟
⎠
 with qv[(3ξ − 1) + β(1 − ξ)] the temperature at constant

boundary conditions of the first kind is reduced to the form
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T (ξ, η, Fo, β) = T0 + 
3qvh

2

2λ (3 + β)
 ⎛⎝ξ

2
 − η2⎞

⎠ (1 − ξ) ⎡⎣1 − exp (− 7 (β + 3) Fo)⎤⎦

and for a prism with three equal faces (β = 3), the steady source 2qv creates the temperature change

T (ξ, η, Fo, β) = T0 + 
qvh

2

4λ
 ⎛⎝ξ

2
 − η2⎞

⎠ (1 − ξ) ⎡⎣1 − exp (− 42Fo)⎤⎦ ,

where for comparison of the stabilization rate to the stabilizations of the temperatures in the three simple bodies one
should relate Fo to the equivalent radius R = h ⁄ 3; then instead of 42 we will obtain p1

(1) = 4.667.
At a linear increase in the wall temperature without internal loading we find

T (ξ, η, Fo, 3) = T0 + ΔTFo − 0.25ΔT ⎛⎝ξ
2
 − η2⎞

⎠ (1 − ξ) ⎡⎣1 − exp (− 42Fo)⎤⎦ . 

Inside a paraboloid of revolution Ω
⎛
⎜
⎝
x ≥ 

h

b2(y2 + z2), 0 ≤ x ≤ h
⎞
⎟
⎠
 , the temperature as a response to the source qv[1+2β(1−ξ)]f(Fo)

at stationary loads (f = 1) is determined by the formula

T (ξ, η, ζ, Fo, β) = T0 + 
qvh

2

2λ
 ⎛⎝ξ − η2

 − ζ2⎞
⎠ (1 − ξ) ⎡⎣1 − exp (− 2.25 (5 + 4β) Fo)⎤⎦ .

CONCLUSIONS

1. The simultaneous use of the positive proper ties of the integral transforms and the or thogonal projection
of the residual, when the entire domain of var iability of elliptic coordinates is taken as a finite element, has en-
abled us to develop an effective method for defining analytical solutions of nonstationary problems of heat transfer
in channels of complex profiles and heat conduction in multidimensional bodies.

2. The universality of the method and the possibility of solving a wide range of problems follow from the
fact that the algorithm is realized at any given velocity distribution function of laminar or turbulent flows. With
the introduction of the residual projection the practical need for preliminary search for a system of eigenfunctions
at concrete values of W and ε for investigating heat-transfer problems by the rigorous methods of mathematical
physics has disappeared. The explicit form of the Sturm–Liouville functions is obtained for a rather narrow range
of problems, and for multidimensional regions it is impossible to determine the eigenfunctions and eigenvalues. The
systems application of the residual projection in the set of representations of temperature fields in alternative spaces
suffices for finding solutions in the second or third approximations. From the main spectrum of such solutions the
first eigenfunction and the eigenvalue are obtained with a high accuracy without investigating the spectral bound-
ary-value Sturm–Liouville problem.

3. In defining solutions in the second approximation of the problems of heat conduction in the three simple
bodies with boundary conditions of the third kind, we have found formulas for calculating the first eigenvalues from
which we find the dependences of the first roots of the characteristic equations for the plate, the cylinder, and the
sphere throughout the range of change in the Bi number (0 < Bi < ∞) coinciding up to the fourth digit of the decimal
fraction with the exact values.

4. The determination of the sought function by arguments with an infinite interval of their change is carried
out for continua, and the temperature field is found in the integral representation with infinite limits of integration. A
change in the elliptic coordinates on a finite interval leads to the synthesis of the temperature by discrete spectra in
the form of a sum of a series of terms, which confirms the expediency of using the exact methods of mathematical
physics at unlimited intervals and the approximate numerical or analytic solution methods when the interval of change
is finite. Among the rigorous methods for solving boundary-value problems in unlimited intervals are the bilateral
Fourier transform and the unilateral transforms with kernels from the sine and cosine functions, and for equations in
cylindrical coordinates — the integral Hankel transform with a Hankel of Bessel functions. If we introduce the defini-
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tion cos μξ and sin μ = 0 as trigonometric functions of the zero and first order, as is common for Bessel functions,
then their similarity is revealed in considering the base coordinates for solving boundary-value problems in the rectan-
gular and cylindrical coordinate systems [11]. For example, in problems for a plate and a cylinder analogous charac-
teristic equations

cos μ = 0 ,   sin μ = 0 ,   
cos μ
sin μ

 = 
μ
Bi

 ,   J0 (μ) = 0 ,   J1 (μ) = 0 ,   
J0 (μ)
J1 (μ)

 = 
μ
Bi

are written.
5. The uniqueness of the method in the solutions of transfer equations with variable coefficients has made it

possible to investigate the problems of heat transfer in flows of Newtonian fluids with a power rheological law and of
structure-viscous media with other flow velocities, and in the Hartmann MHD flow.

6. The search for a solution by the rigorous methods of mathematical physics leads to the determination of
temperature fields by the system of eigenfunctions which are expressed by trigonometric, cylindrical, and other special
functions. These functions are determined independent of the conditions of heat loads; therefore, for some input func-
tions the solutions are reduced to slowly converging series, which is due to the additional difficulties in using such
temperature fields in thermophysical calculations. The application of the method of orthogonal projection in alternative
spaces with power coordinate functions avoids these difficulties.

7. Depending on the geometry of the body and the internal source heat loads, a method for choosing the op-
timal basis in the Riemannian manifold, along whose axis the exact solution or a higher-accuracy solution are found,
has been proposed. In the case of a nonstationary temperature field, a simple search method for a family of isothermal
surfaces, on each of which the temperature remains equal and varies only with time, has been found [8]. A special
condition of internal thermal loading at which in a bounded region the self-organizing process of transition of the
transfer potential to the steady state (stagnation) proceeds has been discovered. In heat conduction problems with
boundary conditions of the first and third kind at such internal loading, heat exchange with the environment terminates
and change-over to a problem with zero boundary conditions of the second kind occurs.

NOTATION

a, thermal diffusivity; f0, f1, initial distribution function of the temperature and its time derivative; t, time; T,
temperature; T0, Tw, constant initial temperature of the wall (medium); w = W ⁄ w0, relative flow velocity of the cool-
ant; w0, mean velocity; λ, heat conductivity; μ, dynamic viscosity; μk

2, eigenvalues; ψ0, stationary distribution of the
internal heat load; Bi, Fo, Nu, Pe, Po, Pd, Biot, Fourier, Nusselt, Peclet, Pomerantsev, and Predvoditelev numbers.
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